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ABSTRACT

Current research at Rensselaer is generating fun-

damental engineering design techniques and concepts for the

chromatographic separator of a chemical analysis system for

an unmanned, martian roving vechicle. Previously developed

mathematical models of the gas chromatograph were inadequate

' for predicting peak height and spreading for some experimen-

tal conditions and chemical systems. Consequently, a new

chromatograph model is developed which incorporates previously

neglected transport mechanisms. A closed-form analytical

solution to the model is not available so the numerical tech-

nique of Orthogonal Collocation is studied. To establish the

utility of the method, three models of increasing complexity

are considered, the latter two being limiting cases of the

derived model: 1) a simple, diffusion-convection model; 2)

a rate of adsorption limited, inter-intraparticle model; and

3) an inter-intraparticle model with negligible mass transfer

resistance. The first model involves one dependent variable

and one spatial dimension; the second, two dependent variables

and one spatial dimension; and the third, three dependent var-

iables and two spatial dimensions. The orthogonal collocation

treatment reduces the models to sets of ordinary differential

equations which are integrated using the Bulirsch-Stoer ex-

trapolation technique.

Simulations with the first model using actual chro-
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matographic input pulse data show the collocation procedure

to accurately represent system behavior. Large Peclet numbers

usually observed in practical chromatographic columns require

a higher degree of approximation than low values. In general,

15 collocation points suffice. Similar results are obtained

from a study of the second model which involves two coupled

partial differential equations. The model is successfully

solved numerically, although computation time becomes exces-

sive. The investigation is concluded with a preliminary

study of the third model which involves three coupled 
partial

differential equations. Estimated computational times based

upon partial simulations of this model show complete 
numerical

solution within available computer capabilities and financial

constraints to be unfeasible. It.is therefore concluded that

if orthogonal collocation is to be applied successfully to

pulsed, distributed systems of the chromatograph 
within com-

puter constraints, further research on the different 
charac-

teristics of the orthogonal functions and the formulation of

the trial function must be undertaken.
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PART 1

INTRODUCTION AND SUMMARY

The synthesis and analysis of mathematical models

of the gas chromatograph is one subtask of a group effort de-

signed to define fundamental design criteria for an optimal

design of a combination gas chromatograph - mass spectrometer

system which is to be part of an unmanned mission to Mars.

The task which must be performed by this part of a Martian

Roving Vechicle is the analysis of samples to determine the

existence of organic matter and living organisms on the

Martian surface. The analysis will involve the subjection of

gaseous,. liquid and solid samples to biological and chemical

reactions, with subsequent product separation and identifica-

tion using the gas chromatograph - mass spectrometer system.

The chromatograph may be looked upon as a separating

device wherethe phenomenon of adsorption-desorption is util-

ized. Owing to the different characteristics of various chem-

icals, each species will adsorb and desorb at different rates

when exposed to a packed bed of granular particles with or with-

out a liquid substrate. Because of the unique behavior of

each chemical, a multicomponent sample may be injected into a

chromatograph and elute as separate waves of specific chemical

species.

Prior to this investigation, chromatograph models

have been formulated based on interparticle transport mechan-

1
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isms with simple adsorbed phase behavior assumed. These pre-

vious model formulations, which have all had closed-form,

analytici time-domain solutions, have proven incapable of ade-

quately predicting component behavior in all cases. Conse-

quently, a new model has been derived which includes both.

interparticle and intraparticle transport mechanisms. The

complexity of this new model precludes direct analytical sol-

ution, and hence application of an appropriate numerical tech-

nique is necessary to effect time-domain solution. Prior to

any time-domain analysis, the model is analysed in the Laplace

transform domain using the method of moments. The first three

moments of the impulse response of the model are derived.

Using actual input data, predictions for the first three moments

of the output data are made and are compared with actual

chromatographic data and predictions of a simpler, interparticle

model. The results indicate that the new model is more ca-

pable of predicting the moments of the actual data.

Because the mathematical complexity of the new model

prohibits a direct, closed-form analytic expression for a res-

ponse, appropriate numerical techniques applicable to the equa-

tions of the new model (and future models which may involve

nonlinear terms) must be used to allow direct comparisions

between prediction and experiment. For the systems of equations

encountered in chromatograph modeling, numerical techniques

require a finite terminal boundary condition as opposed to an

infinite column boundary condition usually used in deriving



analytical solutions to simpler chromatograph models. As a

prelude to numerical technique considerations, a simple, tran-

sient, diffusion-convection, mass transfer-equation is analysed

and criteria are developed wherein a finite terminal boundary

condition can be applied to yield infinite column behavior at

the bed outlet.

Subsequent to the development of a complex chromat-

ograph model and the realization that model simulation and ver-

ification require a numerical technique, attention is directed

to the study of.Orthogonal Collocation as a technique suit-

able for routine analysis of complex chromatograph models. The

motivation for conducting this investigation is several-fold:

computational limitations of the widely used Finite Difference

method, successful use of orthogonal collocation to solve cer-

tain chemical reaction engineering problems, and the lack of

documentation for the application of orthogonal collocation to

pulsed, distributed systems such as the chromatograph system.

The general theory and computationP1 aspects of orthogonal

collocation are reviewed and discussed. One of the steps in

the application of orthogonal collocation involves the inversion

of a matrix. Previously documented developments have given

formulations where the matrix to be inverted becomes increas-

ing ill-conditioned with increasing size and may, due to com-

puter precision limitations, prove non-invertable. Hereto-

fore, this has not been documented. An alternative develop-

ment, theoretically equivalent, is presented which is shown



to successfully eliminate this problem to a high degree.

In order to establish whether orthogonal collocation

is a technique worthy of exploitation in the analysis of chro-

matographic systems, three models of increasing complexity

are solved using the method:

1. A simple, transient, diffusion-convection mass

transfer problem.

2. A rate-of-adsorption-limited, inter-intraparticle

problem - a limiting case of the derived model.

3. An inter-intraparticle adsorption problem with

negligible mass transfer resistance between the

interparticle and intraparticle regions - another

limiting case of the derived model.

For each model, the orthogonal collocation treatment reduces

the partial differential equation(s) to a set of ordinary

differential equations.

The first model is studied because it possesses re.

sponse characteristics found in more complex models, possess-s

an analytic solution for direct comparisions with numerical

results, and establishes guidelines for more complex models

to be considered. Prior to solution of the resultant set of

ordinary differential equations, an eigenanalysis is made of

the differential equation set. This set or the resultant dis-

cretization of the distributed system is stable for axial Peclet

numbers from 1 to 10000 and approximation orders of 3 to 21.

This model is solved for cases of rectangular and actual system



input data pulses. The effects of high (10000) and low (32)

values of axial Peclet number are studied to determine the de-

gree of approximation required for good representation of the

exact system response. The high Peclet number (10000), char-

acteristic of the magnitudes encountered in actual chromato-

graphic system data, requires a higher degree of approximation

than the low value. The sharpness of the forcing function also

affects the numerical results; i.e., a higher order of approx-

imation is required for very sharp input pulses. For the smoother

actual input data and the high Peclet number, a fifteenth or-

der approximation is adequate. The set of ordinary differential

equations is integrated using the Bulirsch and Stoer extrap-

olation technique. For this type of problem, this method is

more efficient (for equivalent error tolerance) than the more

well-known Euler, fourth order Runge-Kutta and Hamming Predictor-

Corrector techniques. Consequently, the extrapolation treat-

ment is used exclusively for integration of the sets of ordin-

ary differ-ntial equations that result from the application

of orthogonal collocation to the problems considered in this

investigation.

Following a study of the simple model, orthogonal

collocation is applied to solve the.second model given above.

This problem possesses an analytical solution which is used

for comparision with the different degrees of approximation

considered. The system parameters which appear in this model

correspond to parameters encountered in actual chromatographic



system experimental work. This is important because the

parameter choice; e.g., Peclet number, is dictated by actual

experiment rather than convenience. This problem is more

complex than the simple problem in that two coupled partial

differential equations are treated using the orthogonal collo-

cation method. As a consequence, a higher degree of approxi-

mation is necessary and the constraints of excessive computer

time and suitable computer hardware availability come to the

forefront of the investigation.

The investigation is terminated with the application

of orthogonal collocation to the third model listed above.

This model has no direct, analytic solution available. Hence,

the strategy is to successively apply orthogonal collocation

with increasing orders of approximation until a convergent

response is realized. Unlike the previous two problems where

only one spatial domain is discretized, the interpaxticle,

this problem requires orthogonal collocation discretizations

for both the interparticle and intraparticle regions. The

problem involves the solution of three coupled partial differ-

ential equations. Again, actual chromatographic system param-

eter values are used. To effect the above strategy of succes-

sive simulations with increasing order of approximation, sever-

al cases are studied for short computer run times. These

times are extrapolated to give estimates of computer require-

ments necessary to complete the analysis. These extrapolations

indicate that within available computer hardware capabilities



and financial constraints, thorough analysis of this problem

is not feasible using orthogonal collocation. This does not

rule out the utility of the theory of orthogonal collocation

as a technique but points out a problem where innovation and

further study may be necessary for the realization of a prac-

tical solution.



PART 2

CHROIATOGRAPH SYSTEM MODELING

A. Chromatograph Modeling Background

One area of the overall gas chromatograph systems

study has been the mathematical modeling of the chromatograph

system. Work in the area has been carried out by several

investigators (Sliva, 1968; Voytus, 1969; Taylor, 1970; Keba

and Woodrow, 1972). A course has been pursued wherein succes-

sively more complex models have been considered. These

models have all yielded analytical expressions from which a

simulated chromatogram could be computed directly. Compar-

ision of predicted system behavior with actual system data

has directed modeling efforts to consider more adequate and

hence more complicated models.

-Prior to this investigation, the most complex model

proposed for the chromatograph system was based on an Inter-

particle phase mass balance and an adsorbed phase mass balance.

Several transport mechanisms were included: axial diffusion,

convection, and mass transfer between the interpaticle and

adsorbed phases. A linear isotherm was used to describe the

adsorption kinetics. This model has been studied and compared

(Keba and Woodrow, 1972) for the cases of finite rates of

mass transfer to the adsorbed phase (nonequilibrium adsorption)

and infinitely high rates of mass transfer to the adsorbed

phase (equilibrium adsorption). In both cases, simulations

using the models failed to predict the degree of dispersion

8



exhibited by many of the experimental data. It was concluded

that additional transport mechanisms, e.g., intraparticle

diffusion, may be contributing appreciably to the overall ad-

sorption-desorption process. Hence, further model develop-

ment and analysis was indicated.

B. Development of the Inter-Intraparticle Adsorption

Model

Previously, the intraparticle region of the chromat-

ograph packing material has been modeled as being nonexistent

or as a region where the transport processes occur at such a

rapid so as not to significantly affect the dynamic behavior

of the system. It is the purpose of this section to refor-

mulate the chromatograph system model by including the trans-

port process which are presumed most likely to affect the

dynamics of the adsorption-desorption process within the

chromatograph._packing material.

Figure 1 presents graphically the transport pro-

cesses to 'e modeled. The sample to be separated is injected

into a relatively inert carrier gas, e.g., helium. As this

slug of sample is transported down the chromatograph by the

carrier gas, the various species diffuse, adsorb, and desorb.

Diffusion of the chemicals in the direction of the carrier

gas flow in the interparticle region is represented by the

dimensionless parameter, PeE, which is determined by the

system fluid mechanics. Mass transport from the interparticle

region to the intraparticle region is represented by a



FIGURE 1 10

CHROMATOGRAPHIC COLUMN INTER-INTRAPARTICLE MODEL CONCEPTS

TRANSPORT FROM INTER- TRANSPORT BY TURBULENT
PARTICLE TO I1TRAPARTICLE AND MOLECULAR DIFFUSION

CARRIER

GAS FLOW

, TRANSPORT BY BULK AND/OR

KNUDSEN DIFFUSIONR

TRANSPORT BY ADSORPTION/
DESORPTIOw



dimensionless parameter, NtOG, which is essentially deter-

mined by the system fluid mechanics. Diffusiin in the intra-

particle region is represented by a dimensionless parameter,

PeA, which is in part determined by the properties of the

particle packing. The rate of adsorption within the particle

is characterized by the dimensionless parameter, NRU. Adsorp-

tion-desorption within the particle is represented by mR I , a

thermodynamic parameter peculiar to each species. This param-

eter contains an equilibrium constant, m, and the quantity

R I . RI is the ratio of moles of fluid within the particle to

the moles of adsorptive sites within the particle. The quan-

tity RI is directly related to the quantity RO where RO is

the ratio of moles of fluid within the total bed to the moles

of adsorptive sites within the bed. The relationship between

these quantities is:

RI = ..(/(1-E)) RO (1)*

The reason for noting this relationship is that the parameter,

mRO has been noted in previous models and the above relation-

ship serves as a unifying concept for the new model formul-

ation which follows.

With the above concepts in mind, the following set

of dimensionless equations has been derived** based on the

assumptions which follow:

* See Part 12, Nomenclature, for definition of terms.
** See Appendix A for derivation.



An interparticle phase mass balance::

LPeEJ z -z NtOG(Y-Yi),1  e)

An intraparticle phase mass balance:

[ He. 2 biy - NRU(yi-yj) -

P/ L OA- A 6aj

An adsorbed Dhase mass balance:

S be NRUY (4)

A thermodynamic relationship between the intraparticle
and adsorbed phases:

j = mx, (5)

The above equations are valid under the following assumptions:

1. The column is isothermal.

2. The carrier gas velocity profile is flat.

3. The axial diffusion coefficient is a composite

factor which may or may not have a turbulent

component.

4. The gas composition is:approximately constant

in the radial direction at a given axial posi-

tion. The concentration gradient occurs in a

thin boundary layer at the inter-intraparticle

interface.

5. The gas composition within the particle is ap-

proximately constant in the angular direction
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at a given radial position; the concentration

gradient occurs only in a thin boundary layer

near the adsorbent surface.

6. The adsorbent layer is so thin that there is

no diffusional resistance within the layer in

the direction normal to the surface.

7. The diffusivity in the adsorbent layer is so

small that there is no diffusion in the direction

parallel to the surface in the intraparticle

radial direction.

8. The net rate of adsorption for the carrier gas

is negligible.

9. Only one component is adsorbed and its gas phase

composition as a mole fraction is small compared

to unity.

10.-- The carrier gas behaves as an ideal gas.

An applicable set of boundary and initial conditions

are as follows:

Initial Conditions:

y (z, 0) = O (6)

yi (z,r-, 0) = 0 (7)

Xa (z,,L, 0) =0 (8)

Boundary Conditions:

y(O, 9) = AS (9)

(8/6)a L(L/R)/PeA] byiA = NtOG(y-y i ); when z=1 (10)
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CyiA = o ; L= 0 (11)

lim y(z, 0) = finite (12)

These conditions reflect a sample-free column at zero time,

a sample injected as an impulse, mass transfer between the

interparticle and intraparticle regions, no concentration

gradient at the center of the column packing, and no end

effects at the column exit.

For the systems under consideration it has been

shown by Keba and Woodrow (1972) that inclusion of the par-

ameter NtOG is of minor inportance. If one were to consider

the case of infinite rates of mass transfer, i.e., NtOG - ,

the coupling condition given by equation (10) would be re-

placed by

-Yi (z. 1, &) = y (z, e) (13)

Thus, a model in the form of a set of coupled,

partial differential equations is proposed. Prior to con-

sideration of the time domain solution of the equations, a

moment analysis can be made to ascertain the predictive ca-

pabilities of the proposed model. This analysis is the subject

of the next part of this investigation.



PART 3

MOMENT ANALYSIS OF THE INTER-INTRAPARTICLE
ADSORPTION MODEL

A. Theory and Background

An analysis of a proposed model can be made prior

to determination of the model's time-domain solution to

yield the gross characteristics of the impulse response of

the model. In addition, because of the poor predictions of

previous models (Keba and Woodrow, 1972) with respect to

chromatogram spreading, it is desirable to know the nature of

the response of the proposed model for the pulse-type functions

which are the sample injections seen in experimental work.

The nature of the response can be characterized by statis-

tical quantities known as moments which may be obtained with-

out knowledge of the time-domain model solution. The moments

may be derived directly from the Laplace domain solution of

the model. The following development will indicate how the

moments of a model are obtained and how the analysis can be

extended to give the moments of systems forced by general

pulse-type inputs.

The impulse response of the chromatogram may be

viewed as the residence time frequency distribution (Douglas,

1972). This quantity resembles the probability distribution

function which appears in statistical analysis. The moments

of the distribution function about the time origin are defined

by the following:

15
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An =  e'f()de f(e)de (14)
o o

where

f(e) = the distribution function being analysed.

The denominator of equation (14) is the area under the function.

The relationship of the moments about the origin to the

Laplace transform is developed in Appendix B. The result is:

Mn (-_l)n lim n (s lim F(s) (15)
S-4O So

where

00

T(s) =[f(0) o e-s f(e)de (16)

Interest also centers on the moments about the

first absolute moment or mean, AI. Mathematically these are

defined by:

n (-) n f(e)de f(e)de ; nt2 (17)

These moments about the mean /~4, are directly related to the

moments about the origin. The relationships are obtained by

formal expansion of equation (17). Appendix B gives the rel-

ationship for n=2 and n=3. For n=2, the moment about the

mean is exactly the variance of the response. For n=3, the

moment about the mean is related to the skew of the response.

One can use the preceding to develop equations rela-

ting the moments of system responses for arbitrary pulse-type

forcing functions (see Appendis B for details). That is,

given the system input data (the moments of which can be
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computed from equations (14) and (17)) and the system trans-

fer function (the Laplace transform of the impulse response),

the moments of the system response may be determined and

compared with the moments of the actual output data. Referring

to the block diagram in Figure 2, the results are:

Ay = AX AG (18)

41Y = /I +  1G (19)

A92Y = 2X + I2G (20)

MA3Y '/3X + (21)

Equation (18) states that the area under the output curve is

the product of the area under the input curve and the impulse

response curve. Equation (19) states that the mean of the

output occurs at the sum of the mean of the input function

and impulse response. Equation (20) states that the yariance

of the output is the sum of the variance of the input function

and the variance of the impulse response. Equation (21) states

that the third moment about the mean of the output is the sum

of the third moments about the means of the input function

and impulse respons, respectively.

This technique can also be used for estimating sys-

tem parameters. Douglas (1972) uses an equation similar to

equation (20) to estimate an axial Peclet number for a packed

bed. Schneider and Smith (1968) apply moment analysis to es-

timate adsorption equilibrium constants, rate constants, and

intraparticle diffusivities for a chromatographic system mod-
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X(S) Y(S)

X(S)='f [X(e) ; X(e) IS THE FORCING FUNCTION

Y(S)= [Y(9)] Y(9) IS THE SYSTEM RESPONSE

G(S)= SYSTEM TRANSFER FUNCTION

FIGURE 2 TYPICAL SYSTEM BLOCK DIAGRAM
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eled similarly to that of Part 2. However, accurate param-

eter estimation using this method is limited by the accuracy

of the data used for analysis.

B. Application of Moment Analysis to the

Inter-Intraparticle Adsorption Model

-The previous section outlined a method which can be

\ used to analyse pulsed systems to determine the gross charac-

teristics of the system response. This section will document

an application of the concepts of moment analysis to the pro-

posed model of Part 2.

Consider the set of partial differential equations,

boundary conditions, and initial conditions, equations (2)

through (12). A Laplace transform domain solution for the

impulse response or transfer function was derived and appears

in Figure 3; details appear in Appendix C.

Applying the definition given by equation (15) and

using equation (17), the moments U,, iz, and 3 are derived

for the impalse of the Inter-Intraparticle Adsorption Model.

The results are presented in Figure 4; details of the manipul-

ations appear in Appendix D.

The parameters PeE, NtOG, and PeA can be estimated

a priori. The parameters mRO and NRU are not predictable a

priori. Previous modeling analysis has estimated mRO by a

curve fitting process (Benoit, 1971). The estimation of NRU

will most likely involve curve fitting also.

An analysis was made using existing single component
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Y(1,s) = exp - + (s) Pe E

where:

(s) = NtOG(1 - X(s) ) + s

X(s) = b sinh(VJ )
[(b-1)sinh(v/.) + Jv~ cosh(/1)]

2
-NRU mRI + R 2

(s) = (s + NRU mR) + NRU + s ( )

b = NtOG

3(1-) . (L)2 1
( ) R PeA

S. = Particle porosity

=- Bed void fraction

Figure 3 Transfer Function for the:Inter-Intraparticle
Adsorption Model
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/Wi = 1+1/mRO + (1-E)/

A2 = 2(AM) 2/PeE + 2- 1E)BI

S + 1/mRl)2 [(R/L)2 PeA/1 5 + (1-)ENtoG]

+ 1/NRU(mRI)2}

= 6Aq1 2 /PeE + 6 [(1-)p/C ] [(1+1/mRI)/NRu(mRI)2'

[(R/L) 2 PeA/1 5 + (1-E),ENtoG] + (1+1/mRi)3

[((1-E)P/ENtOG)2+ 2(1-)p(R/L)2PeA/15 E NtOG

-23 (R/L) POA/315] + I/NRU (m)

Figure 4 Moments of the Impulse Response of the
Inter-Intraparticle Adsorption Model
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data. The parameters PeE, PeA, and NtOG were estimated using

existing correlations. The values of mRO which were estimated

by Keba and Woodrow (1972) using simpler models were used and

the NRU was varied. Tables 1 and 2 give results of this anal-

ysis for acetone at 100 C and ethylene at 50 C. Both exper-

iments.used Chromasorb 102 column packing, a porous material.

In each case, the moments for the impulse response of the model

were computed using the equations given in Figure 4. Use of

system input data and equations (19) through (21) give predic-

tions as a function of NRU for the output moments. These pre-

dicted values are compared with actual moments of the output

data and with the predictions of the simpler, interparticle

equilibrium adsorption model. Expressions for the moments of

the simpler model were initially developed by Voytus (1969).

The results indicate that the proposed model can

more closely predict the characteristics of the output data

than the simpler, interparticle model. The results indicate

that a value of NRU on the order of several hundred will give

a predicted second moment very close to the second moment of

the output data. This magnitude of NRU is consistent with the

values of NRU which can be deduced from the independent research

of Schneider and Smith (1968). Tables 1 and 2 further indicate

that matching of the third moments would give different values

of NRU. However, the use of third moments is not as reliable

because data inaccuracies are further magnified in the analysis.

It should be noted that if one accepts the value of
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TABLE 1

MOMENT ANALYSIS AND PARAMETRIC
STUDY - ACETONE 1000 C.

(1) (2)
mR0 i, observed l1,predicted 1,predicted

0.029 173.29 158.69 156.49

NRU "2, observed 'A2,predicted M2,predicted

100 815.67 977.55 437.28
200 723.41
400 686.34
800 517.80

1600 483.53
3200 466.40
6400 457.83

12800 453.55
25600 451.41

NRU A3, observed '13,predicted A3,predicted

100 25404.0 23192.0 19499.0
200 - 20454.8
400- 19745.3
800 19555.4

1600oo . 19501.7
3200 19485.1
6400 19480.4

12800 19477.2
25600 19476.2

PeE = 8689.

NtoG = 88960.

(L/R)2/PeA = 328.2

(1) Inter-Intraparticle Adsorption Model
(2) Interparticle Equilibrium Adsorption Model
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TABLE 2

MOMENT ANALYSIS AND PARAMETRIC
STUDY - ETHYLENE 50 C.

(1) (2)
mR0 _1, observed 1 ,predicted 1, predicted

0.194 26.475 25.986 23.719

NRU 12,observed 'M2, predicted U2, predicted

100 7.024 13 .283 0.388
200 6.973
400 3.817
800 2.240

1600oo 1.451
3200 1.056
6400 0.859

12800 0.760
25600 0.711

NRU M3,observed .M3,predicted N3,predicted

100 9. .623 13.049 0.191
200 3.519
4o0 . 1.058
800 0,403

1600 0.219
3200 0.163
6400 0.144

12800 0.137
25600 0.134

PeE = 9744.

NtOG = 79750.

(L/R)2 /PeA = 436.2

(1) Inter-Intraparticle Adsorption Model
(2) Interparticle Equilibrium Adsorption Model
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NRU as being on the order of several hundred for each case,

all other parameters, excluding mRO, are of the same magni-

tude. The key to the difference in the two component behaviors

is the parameter mR0 .



PART 4

TERMINAL BOUNDARY CONDITION ANALYSIS

Mathematical modeling of chromatographic systems

commonly require solutions to equations of the form:

(1/Pe)(y/6za) - 3y/3z - RA = by/6e (22)

,Application of analytical techniques to the above equation,

when possible, commonly utilize the terminal boundary condition:

lim y(z,e) = finite; 0>0 (23)

Use of the above boundary condition in analytical work yields

a great deal of mathematical simplification. In addition, the

use of this boundary condition is consistent with the theory

which has been developed for prediction of the dispersion in

packed beds; see, for example, Gunn (1969).

However, when numerical techniques must be applied

to solve equation (22) or any other model which defies analyt-

ical solution, the terminal boundary condition given by.equa-

tion (23) must be replaced by a terminal boundary condition

which is both computationally expedient and physically mean-

ingful. A finite boundary condition which has found general

usage in chemical reaction engineering problems (Danckwerts,

1953).and (Wehner and Wilhelm, 1956) is:

by(1,)/z = 0; e-0 .(24)

26
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Bastian and Lapidus (1956) considered the case where R in

equation (22) was.an adsorption term. A linear relationship

was assumed to describe the adsorption kinetics. For a step-

input and the conditions chosen, Bastian and Lapidus showed

that finite column calculations, using equation (24) as a ter-

Wxinl boundary condition, closely approximated infinite column

calculations, using equation (23) as a terminal boundary condi-

tion.

The analysis of chromatograph systems for pulse-type

forcing functions has prompted consideration of the two ter-

minal boundary conditions. The question arises as to how the

use of a finite terminal boundary condition affects output

prediction as compared to the infinite column case when the

system is forced by pulse-type functions. It is desirable for

the two predictions of column outlet behavior (z=1) to be sim-

ilar so that the use of a priori estimates of Pe are valid in

complicated. models having the :orm of equation (22).

Tn order to answer the above question and to establish

the conditions under which a finite terminal boundary can be

used to yield-infinite column behavior at the column outlet-..;

(z=1), two relatively simple problems can be considered:

Case I:

(1/Pe)(y/ - y/z - RA = (25)

y(z,O) = 0; z>0 (26)

y(O,e) = 6(G); r o (27)

lim y(z,9) = finite; 0>0 (28)

RA = 0 (29)
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and

Case II:

(1/Pe)(9y/6z) - 6y/z - RA = y/6e (30)

y(z,0) = 0; z>0 (31)

y(0,8) = 6(e); G0 (32)

by(zo,9)/6z = 0; e>0, zo-i and arbitrary (33)

RA = 0 (34)

Case I considers the impulse response of the simple,

one-dimensional, axial dispersion-convection model in an in-

finite column. Case II considers the unit impulse response

of the simple, one-dimensional, axial dispersion-convection

.model with the finite boundary condition. It is desirable to

determine the conditions under which the two responses are

equivalent. These conditions can be determined without resort-

ing to the comparisions of the analytical solutions for each

case, through use of the method of moments.

At a dimensionless length of unity, the column out-

let, the Laplace transforms of the two solutions are*:

Case I:

y(l,s) = exp[(Pe/2)-(arg)] (35)

Case II:

y(l,s) = exp(Pe/2)([(Pe/2)+(arg)] exp[-(l-zo)(arg))
-[(Pe/2)-(arg)] expC (1-zo)(arg) /

<[(Pe/2)+(arg)] exp(zo(arg))
- (Pe/2)-(arg)] exp(-zo(arg))) (36)

* see Appendix E for details.

......1.*.
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where Pe/
arg = (Pe/2)+ Pe s (37)

Each respective output curve can be characterized

by its moments. Two moments are considered here - the first

moment about the origin and the second moment about the mean.

The first moment about the origin gives the time of appearance

of the mean of the output curve. The second moment 'about the

mean gives the variance of the output curve. These moments,

as has- been previously noted in Part 3, are directly obtain-

able from the Laplac.e transform domain solution. The general

relationships were given in equations (14) through (17). Us-

ing these relationships, the Case I and Case II transfer

functions were analysed to yield:

A11 = 1 (38)

= 2/Pe (39)

and -

Aiy = 1 +[exp(-Pe z o ) - exp(Pe - Pe zo)] /Pe (40)

A21 = 2/Pe + exp(Pe - Pe z o ) [4/Pe - 4zo/Pe

- 4/Pe2 ] + exp(-2 zo Pe)/Pe2

- exp(2 Pe - 2 zo Pe)/Pe2  (41)

If one considers the limit of the Case II moments as zo becomes

very large, the two results are equivalent, or:

lim u,, = A, = 1

and

lim 2= 2x= 2/Pe
Z o4* ;Oc
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Table 3 summarizes the results of parametric stud-

ies of the two moments considered for each case. The errors

in Case II versus Case I moments for zo=1 are significant for

low Peclet number. The error diminishes with increasing Peclet

number. This confirms the qualitative conclusions of Friedly

(1972) for high values of Pe. Table 3 also gives the value

of zo which, when used in Case II, will yield output character-

istics the same as Case I output characteristics. This means

that for a given Peclet number, application of equation (33)

at the noted zo, will yield output characteristics at z=1 that

are, for all intents and purposes, the same as those predicted

by Case I.,

Table 4 presents some typical values of the Peclet

parameter for-several systems. For chromatographic systems,

the range of the Peclet number is on the order of 5,000 to

10,000. Thus in this research, it appears that use of the

zero-derivative condition (equation (33)) at the column exit

will not.cause serious problems.

In conclusion, the comparision of the mean and var-

iance for impulse responses at z=1 for the two different bound-

ary conditions has yielded guidelines which are useful when

approximating infinite column behavior using a finite terminal

boundary condition. The use of the criteria for general

pulse-type forcing functions would yield results wherein the

absolute errors between the two cases would be the same but

the relative errors between cases would decrease. The guide-



TABLE 3

Case I and Case II Comparision Results

Errors at zo = 1.0

Absolute Relative Absolute Relative
Error Error,% Error Error,%

Pe A - , c (t-o)/A ) x too i72  - A,r ((_- )/ )1 _
\ c

2 0.4323 43.23 1.245 124.5
4 0. 2454 24.54 0.3125 62.9
8 0.1250 12.50 0.07813 31.2

16 0.06250 6.250 0.01953 15.6
32 0.03125 3.125 0.004883 7.91
64 0.01'563 1.563 0.001221 3.91

128 0.00781 0.781 0.0003052 1.99
256 0.00391 0.391 0.0000763 0.976
512 0.00195 0.195 0.0000191 0.489

1024 0.00098 0.098 0.0000047 0.241
2048 0.00049 0.049 0.0000012 0.123
4096 0.00024 0.024 0.0000003 0.0615
8192 0.00012 0.012 0.0000000 0.0

Case I characteristics ' Case II characteristics

Safe zo  Safe zo

2 9.791 11 .768
4 5.254 6.021

--.. 3.043 3.328
16 1.978 2.073
32 1.467 1.490
64 1.223 1.222

128 1.106 1.044
256 1.050 1.002
512 1.024 1.0005

1024 1.011 1.0001
2048 1.005 1.00002
4096 1.002 1.000005
8192 1.001 1.000001

.li



32

TABLE 4

Peclet Numbers for Four Typical Systems

System Pe Reference

Micro Gas Chromatograph Column 233 (Wilhite, 1966)
(Water in Helium)

Typical Gas Chromatograph Column 5622 (Keba and Woodrow,
(Water in Helium) 1972)

Typical Gas Dehydrator 1777 (Lashmet, 1973)
(Water in Helium)

Small Experimental Reactor 155 (Smith, 1970)
(S02 in Air)
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lines developed here should also prove useful for models in-

cluding other transport mechanisms (RA 0). When applicable

to more complicated models, the method of analysis used here

will give more definite guidelines for each specific situation.



PART 5

ORTHOGONAL COLLOCATION AS A NUMERICAL TECHNIQUE

A. Motivation for Study of Orthogonal Collocation

The complexity of the model formulation in Part 2

necessitates the application of numerical approximation tech-

niques to effect solution of the system of partial differen-

tial equations. A preliminary study of the widely prevalent

technique known as Finite Differences has been made to ascer-

tain whether or not this computational technique would prove

suitable and effective for solution of the type of equations

encountered in chromatograph system modeling.

Finite difference approximations have predominantly

been used in the analysis of partial differential equations.

To obtain numerical solutions to partial differential equa-

tions, one replaces the continuous variables with discrete

variables. The relations between these discrete variables in

the method of finite differences are called finite difference

equations. The relationships are based on Taylor series rep-

resentations of the dependent variable. The domains of the

independent variables that are discretized form a system of

grid points. Figure 5 shows a grid representation for the

transient analysis of a system with one spatial independent

variable. The spatial dimension, z, is shown as being bounded

and the time variable, 8, is shown with no particular bound.

The grid is a fixed grid; i.e., spatial discretizations and

time discretizations are uniform for each domain. Note that

34
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FIGURE 5 GRID REPRESENTATION FOR FINITE DIFFERENCE
METHOD
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the value of z, the continuous space dimension is given by:

z = i.(Az )

where i refers to a particular spatial grid point and &z is

the spacing between spatial grid points. Similarly, the

value of e, the continuous time variable is given by:

e = j.(e )

where J refers to a particular time grid point and A@ is the

interval between time grid points.

For parabolic problems (as is the case for the sec-

ond-order chromatograph system models), the two-level implicit

method known as the Crank-Nicolson method is probably most

popular and is well documented (Lapidus, 1962). In this method,

the following approximations are made for the first and second

spatial derivatives and the first time derivative:

(y/ij i+lj-Yi-l i+lYi, _

2 (Az) 2 (az)

W/ Yji Yi+,j-2 yij Y _1-1j yy+, J+1-2yi j+l+Yi-, J+ 1

/ J (Lz)2  (6z) 2

(Oy/ae)ij (Yi,j+1 - Yi)/ ( Ae)

where the i subscript denotes a coordinate in the spatial

domain and the j subscript denotes a coordinate in the time

domain.

Preliminary studies have been made applying the

Crank-Nicolson method to the problem:
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(1/Pe) (Wy/bz2) - y/z = by/6e

y(z,O) = 0; z0O

y(0,e) = 0(G); e>o
by(zo,e)/69 = 0; e>0

Simulations were made with following conditions:

i. ~(e) was a triangular-type pulse of duration

0.01 and with unit area. This is quite a sharp

pulse as far as typical chromatograph input

pulses are concerned, but it was used mainly in

the interest of saving computer time.

2. The Peclet was fixed at 8,000.

3. The time increment, AG, was held at 0.0004

4. The response was studied at z=0.05. This is a

drastic reduction in the normal spatial coor-

dinate studied, but, again, this was in the in-

terest of conserving computer time.

5. The terminal boundary condition was applied at

zo = 0.20.

6. The spatial increment, Az, was varied in the

following sequence:

0.0002, 0.0004, 0.0010, 0.0025

For spatial increment values of 0.0010 and less, the simula-

tions were stable. However, when az was increased to 0.0025,

instability in the form of oscillation in the response was

exhibited. The very small Az required is directly attributable

to the Pe value used. This instable Az value is not quite as
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small as the value that is predicted by the stability of

Price, et. al. (1966)

The simulations for spatial increments of 0.0002,

0.0004, 0.0010 gave reasonable results when compared to results

convolving 0(e) with the analytical impulse response. The

discrepancy between the analytic and numerical computations

appeared in the magnitudes of each response point - the numer-

ical results were on the order of 20% too low. This in turn

affected the areas beneath the response curve for the numer-

ical results - all areas were on the order of 0.80 as compared

with the correct area of 1.0. The area under the analytical

response curve was 0.96 which is tolerable considering the

sharp input. This discrepancy in response area can be resolved

by adding additional parameters to the difference equations

to yield an exact conservative relationship (Rogers, 1973):

System Input - System Output over
the interval j to J+1

l=I i=1

where N is the total number of spatial points. This analysis

was not performed because it was felt that the method already

suffered from a more alarming feature - the high degree of

spatial discretization which is necessary for the large Pe

values encountered in chromatographic systems analysis. Ex-

trapolation of the computing time required for the simulations

performed yields an estimate of one to two hours of computer

time (IBM 360/50, FORTRAN G) required for complete simulations
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over the space interval (0, 1.0+). The time would naturally

increase when broader input pulses are used. Similar conclu-

sions on the use of finite difference schemes were reported

earlier (Pfeiffer, 1972).

Because of the high degree of spatial discretization

required by the finite difference method and the subsequent

high cost of computer simulations, it was felt that further

pursuit of finite difference formulations for problems sim-

ilar to the above was not warranted in this investigation and

that other techniques should be studied to determine if they

would be computationally more expedient and desirable.

B. Theory and Background of Orthogonal Collocation

A recent text (Finlayson, 1972) has dealt with sev-

eral approximation techniques for the solution of the differ-

ential equations which arise in the analysis of transport

phenomena. A group of approximation techniques has been des-

ignated the Method of Weighted Residuals (MWR). A subclass

of MVR is the Method of Orthogonal Collocation. This method

has been successfully applied to several problems in the realm

of chemical reaction engineering. Investigators in this area

include Ferguson and Finlayson (1970), Finlayson (1971),

Villadsen and Stewart (1967), Villadsen and Sorensen (1969),

and Villadsen (1970). The purpose of this section is to pre-

sent a summary of the theory behind the method. :Discussion of

investigations that concern general computational aspects will

follow in the following section.
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The Method of Weighted Residuals approach to the

solution of partial differential equations starts with a rep-

resentation of of the dependent variable, y, by a finite sum

of trial functions Pi. An example might be:

y(z,0) o(z,e) + ai(e) Pi-1(Z) (42)
i-I

where 0o(z,e) is a function which may be chosen to satisfy

one or more boundary conditions. The functions Pi(z) are nor-

mally specified and the time-varying coefficients, ai(e), are,

determined in a manner to give the "best" solution of the dif-

ferential equation.

The next step in the MWR is to manipulate the differ-

ential equation such that one side, say the right hand side,

of the equation is zero. Then,,the trial function expansion

is substituted into the left hand side. This substitution of

the trial function expansion into the manipulated differential

equation forms what is termed the residual, Res. If the trial

function were exact, the residual would be zero. In MWR, the

coefficients, ai(G), are determined by specifying weighted

integrals of the residual to be zero; i.e.,

Wj (Res) dV = 0; j=1,2, ... N (43)

V
The choice of weighting functions, Wj, determines

what class of MWR is to be applied. For the general colloca-

tion method, the weighting functions are chosen as displaced

Dirac delta functions:

Wj = (z- zj); j=1,2, ... N (44)
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Substitution of equation (44) into equation (43) gives the

result of forcing the residual to be zero at N specified col-

location points. As the degree of approximation is increased,

the residual will forced to be zero at an increasing number

of points in the spatial domain and the trial function should

converge to the true solution within a given accuracy.

Within the class of collocation methods is the sub-

class of orthogonal collocation. The distinguishing feature

of this method is that the trial functions, Pi(z), are chosen

as orthogonal polynomials defined by the following relationship:

b

fw(z) Pi(z) Pj(z) dz = Cisij (45)

where ]a, b is the interval of orthogonality, w(z) is a pos-

itive weighting function on [a,b , Ci is a scale factor, and

jij is the Kronecker delta. The group of polynomials defined

by equation (44) is said to be orthogonal on the interval a,b)

with respect to the weighting function w(z).

'he N collocation points are chosen as roots to

PN(Z), which is the polynomial of the next highest order in

the trial function expansion, the highest being PN-1 in equa-

tion (42). The basis for choosing the roots of the polynomial

as the collocation points instead of equidistant points in the

interval of interest can be found in the theory of polynomial

interpolation. Several results, as documented by Lanczos (1956)

are summarized here:

1. Polynomial expansions are justified due to the
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fundamental theorem proved by Weierstrass in

1885 which establishes that any continuous

function in a finite interval can always be

approximated to any degree of accuracy by

finite power series.

2. The Weierstrass theorem does not imply that an

approximating polynomial can be obtained by us-

ing equidistant points. This behavior was stud-

ied by Runge in 1901 who showed that equidistant

interpolation of some very simple analytical

functions could in certain regions yield very

erroneous results which did not disappear with

increased points, This behavior is termed the

"Runge phenomenon."

3. The difficulties which occur with equidistant

interpolation disappear when the zeros of the

first neglected polynomial in the polynomial

approximation are used as the interpolation

points. However, this introduces the need to

know the roots of the particular polynomial.

CG. General Computational Aspects of Orthogonal Collocation

The solution of parabolic partial differential

equations using orthogonal collocation requires several steps

which are independent of the particular equation under con-

sideration. This section presents two formulations which are

theoretically equialent but which differ in computational
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and coding advantages. The first formulation, although some-

what more complex from a coding point of view, will be shown

to be superior for computations.

A trial function has been proposed, Finlayson (1972,

p. 105), for second order systems on the spatial interval [~,1 .

For transient analysis, the trial function is of the form:

N
y(z,e) f(e) + g(e) z + z(1-z)2 ai(G) Pi.l(z) (46)

i=1

The above equation has N+2 unknowns: The functions f(e), g(G),

and ai(9) , i=1,N. These are determined by the boundary con-

ditions at z=0 and z=1 and by performing collocation at the N

roots of PN(z). Thus one has a set of N+2 points:

z i =0

ZN+2 = 1

and Jz; J=2, N+1I; the roots of PN

Now, if one were to construct the approximate solu-

tion at these N+2 points, a matrix equation would result:

y( 1 ,8e) 1 z1  z 1 (1-zl)P 0 (z 1 ) ... zl(1-zl)P(zl)' f()

y(z 2 0) 1 z 2  z 2 (l-z 2 )PO(z 2 ) ... z 2 (1-z 2 )P-1 (z 2 ) g(G)

* - 0 0 0 al(G) (47)

y(zN+1,e) 1 zN+ I zl(-z+)Po (z) ... z(1-z)P..C z) *

y(N+2,e) 1 zN+2 7-(1-zq)Po (ZL ... z (1 ZP,,I(z,) aN ()j

Now define the following quantities:
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y(z,Oe)

y(z 2 ,e)

Y = . (48)

y(zN+1.)
y(zN+2 ,)

1 z1  z 1 (1-zl)PO(z1 ) .. z 1 (1-zl)P-,(zl)

1 z 2  z 2 (1-z)P 0 z2 )0(z2) .. z 2 (1-z 2 )l(z 2 )

P A 0(49)

1 zN+1 z,(1-z )Po(2 ,) ... z(1-za)p,(z*,)

1 7N+ 2 zji-4(1-zNPO(g+) ... Z,,(Izt +r,)P-j+4), j

f(e)

g(e)

f a1 (e) (50)

aN(e)

Use of equations (48), (49) and (50) reduces equation t47) to

the more compact form:

= R f (51)

The spatial derivatives may be expressed in a similar form:

y/z = Ri f (52)

9'/6 1 = R2 f (53)

where
by(zi,e)/z

by/6 z = . (54)

by( z,,, E)/ z
by( z( , e)/6 z
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by(z,8)/zZ

jr(zt, e)/6z2

[R1 l = 0; j=1,N+2

[M1 j,2 = 1; j=1,N+2 (56)

[R] ji = z (l1-z) dPi1 3 (zj)/dz

+ (1-2zj) PI_ 3 (zj) ; j=1, N+2
i=3, N+2

and

2] j,1 21 j3,2 = 0; j=1,N+2

[12] = Zj(1-zj) d2pi_3 (zj)/dz2
(57)

+ 2(1-2zJ) dPi- 3 (zJ)/dz

- 2P1 3(zj) ; j=1,N+2
i=3,N+2

The time-varying vector f may be eliminated from equations (52)

and (53) by premultipling equation (51) by the inverse of R,

-1
R , or:

f0= R "1 y

and

6Y/b = R-1  y (58)

6y1 z = R2 R- y (59)

Equations (58) and (59) thus yield expressions for the first
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and second spatial derivatives at the N+2 points in terms of

the solution at the N+2 points.

Alternative to the formulation of above is a form-

ulation which is presented by Finlayson (1972, pp. 105-106).

Expansion of equation (46) yields an (N+1) order polynomial:

N+I

y(z,O) - f(e) + 2j di(e) z i  (60)

Writing the approximate solution at the N+2 points yields a

matrix equation similar to equation (51):

y = Qd (61)

where:

2 N+I

1 z2  2  ... z2

Q . . . (62)
* 2 N+1

-ZN+1 zN+1... ZN+I
2 N+1

1 ZN+2ZN+2... ZN+2

f(e)

d2(e)
d . (63)

d(e)

The first and second spatial derivative vectors can be writ-

ten as;
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y/3z Q= 1 d (64)

by/cz z = Q2 d (65)

where:

= (i-1) zj ; J=I,N+2 (66)
i=1,N+2

=21ji  = (i-1)(i-2) zj-; j=I,N+2 (67)
i=1,N+2

As in the first formulation, the time-varying vector, d, may

be eliminated from equations (64) and (65) by pre-multiplying

equation (61) by the inverse of Q, Q-. or:

S= Q7 z

and

'Y/6 z = 9Q 1 y (68)

/ 2 Q- y (69)

Thus, equations (68) and (69) give expressions which are idrn-

tical to equations (58) and (59). The matrix product. R R-1

is equivalent to Q1 Q-1 and R2 R- 1 is equivalent to Q2 Q1

Since the computations of Q, Q1, and 90 only require know-

ledge of the collocation points and not knowledge of the par-

ticular polynomial coefficients being considered, one might

conceivably prefer the second formulation. Both formulations

require the computation of the inverse of an (N+2) square

matrix.
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Computationally, it is desirable for the matrix

being inverted to be well-conditioned with respect to inver-

sion. An analysis was made comparing the inversion qualities

of the matrices R and 9. The ease of inversion is measured

by the condition number of R and 9 respectively and with the

number of decimal digits which are left unchanged following

iterative improvement of the initial Gauss-Jordan reduction

of each matrix. Stewart (1973) discusses the problem of ill-

conditioning and the use of iterative improvement in matrix

inversion. Table 5 compares the inversion characteristics of

R and g for increasing N. The condition numbers cited are

lower bounds on the true condition numbers relative to the

i norm*. Appendix F shows how the lower bound and upper

bound on the condition number is computed. Except in the

analysis of _ for (N+2) 1 22, there were no practical dif-

ferences in the lower and upper bounds.

Table 5 indicates that the matrix R is well-conditioned

with respect to inversion using the double precision word

length available on.the IBM 360/50 computer. In all cases,

the computation of the product R R-1 yielded a matrix whose

off-diagonal elements were less than or equal to 106. The

table also shows the progressively poorer conditioning of Q

with respect to inversion. The (26 x 26) case is so ill-

* the L 1 norm of an (n x n) matrix A is defined as:

L1 norm(A) = max IAij ; J=1,2, ... n
j =
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TABLE 5

Comparision of Conditioning of R and q
Matrices with Respect to Inversion

Matrix Size Lower Bound IDGT* Lower Bound IDGT*
on Condition of R R on Condition of Q

( 3 x 3 ) 0.120 x 100 15 0.240 x 1o00

( 4 x 4 ) 0.328 x 102 15 0.149 x 103 15

( 5 x 5 ) 0.739 x 102  15 0.944 x 103  15

( 6 x 6 ) 0.142 x 10 15 0.591 x 104  14

( 7 x 7 ) 0.243 x 103  15 0.366 x o105 14

( 8 x 8 ) 0.384 x 103  15 0.225 x 106 13

( x 9 ) 0.571 x 10 3  15 0.138 x 107 13
(10 x 10) 0.812 x 10 3  15 0.840 x 10 7  11

(11 x 11) 0.111 x 104  15 . 0.510 x 10 8  11

(12 x 12) 0.148 x 104 15 0.309 x 10 9  11

(14 x 14) 0.244 x 104  15 0.112 x 1011 9

(18 x 18) 0.545 x 104 15 0.145 x 101 4  6

(22 x 22) 0.103 x 105 15 0.177 x 1017 2

(26 x 26) 0.179 x 105 15 0.907 x 101 8  0**

* IDGT is the approximate number of digits in the inverse which
were left unchanged after iterative improvement

J* There was no convergence in the iterative improv ent. The
.upper bound on the condition of Q was 0.202 x 10' based on
the "best" Q-1

Note: Subscripts R and Q on IDGT refer to inversion of R and
Q respectively.
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conditioned that inversion using the available computer is

computationally impossible. Based on condition numbers and

accuracy, either formulation is acceptable for (N+2) I 5;

while for (N+2)> 6, the first formulation is preferable.

It should be noted that Finlayson(1972, p.35)

alludes to this problem but the comment is quite qualita-

tive and somewhat obscure:

"The orthogonality of the polynomials
gives computational advantages, although the
same approximation can be expressed in terms
of powers of x, if the computations can be
done accurately enough".

The preceding analysis used the roots of the so-called

shifted Legendre polynomials. These are defined by equation

(45) if one lets a=0, b=1, and w(z)=1. The polynomial coef-

ficients were computed using the relationships of Villadsen

(1970). Figure 6 shows the behavior of the first four of

these polynomials. The roots were computed by'shifting the

abscissas from Gaussian quadrature formulae, available in

Abramowitz and Segun (1965), Love (1966), and Stroud and

Secrest (1966),.

Although most of the problems solved by others us-

ing orthogonal collocation have not required over 12 collocation

points, the results of this section point out a computation

disadvantage of the'second formulation which appears at a

fairly small degree of discretization and gets progressively

worse. The first formulation requires some additional infor-

mation but successfully circumvents the problems inherent in
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the second formulation. Of course, the precision capabilities

of the computer used for computations must be taken into

account also.

In addition, these remarks carry over into problems

where it is chosen to use polynomials in the squared spatial

dimension. For example, a trial function which has been pro-

posed for solution of a catalyst modeling problem is:

N

y( ,e) = h(G) + (i-,J) = ai(G) Pi_-l( 2 ) (70)
i=1

where h(O) is determined by the boundary condition at A=I

and the boundary condition by(0,9)/&z =0 is satisfied by the

trial function. Subsequent expansion and formulation at the

respective collocation points yields a matrix to be inverted

and the procedure of retaining polynomials within a coefficient

matrix similar to R is favored over a formulation yielding a

matrix similar to Q for the reasons previously listed.



PART 6

APPLICATION OF ORTHOGONAL COLLOCATION TO A
TRANSIENT, DIFFUSION-CONVECTION MASS TRANSFER-

PROBLEM

The use of orthogonal collocation as a technique

for solution of pulsed, distributed systems, the chromatograph

system being only one such system, is an area which has not been

documented in current literature. Because of this lack ofcon-

tribution in this area, guidelines for effective use of this

method must be established and documented.

In this section the general aspects of orthogonal

collocation enumerated upon in the previous section will be

applied to solve a simple, transient diffusion-convection mass

transfer problem:

(1/Pe)(y/z ) - 6y/6z = by/e (71)

y(z,O) = 0; z>0 (72)

y(0,.) = 0(0); 070 (73)

by(zo,o)/6z = 0; 0>0 (74)

Motivation for the study of this problem is several

fold. First of all, the problem has a direct analytic solution,

therefore giving a result.useful for comparision. Secondly,

the problem possesses characteristics of more complex models.

Thirdly, successful application of orthogonal collocation

should give guidelines for subsequent applications.

53
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The preceding analysis has been conducted based on

a spatial interval of [0,1i as the interval of orthogonality

for the orthogonal polynomials in the trial function expansion.

However, as was shown in Part 4, application of boundary con-

dition (74) should be made at some point zo which should be

different than unity depending on the value of the Peclet

number. To avoid derivation of additional polynomials orthog-

onal 6n the interval [0,zo] and the determination of the required

roots, the above problem may be rescaled in the spatial domain

by the following change in variable:

zNEW = (1/zo ) z

Therefore

(1/bz) = (1/zo ) (/1z/6zEW) (75)

(1/bz) 2 = (1/) 2 (1/ZNEW) (76)

Use of equations (75) and (76) and deletion of the subscript

"NEW" yields the rescaled problem:

(1Pe)(1/zo)( y/6z z ) - (1/zo)by/6z = by/69 (77)

y(z,O) = 0; z>O (78)

y(o,e) = 0(e); G_0 (79)

6y.(1,)/6z = 0; e0o (80)

Where one was concerned with the dimensionless length of uni-

ty in the old coordinate system, one is now concerned with
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the dimensionless length of (1/z o ) which now corresponds to

the outlet of the bed.

As a variant of the favored formulation of Part 5,

one may represent the solution at the N collocation points,

[z 2 , ZN+1j , as:

y(z2 e) 1 2

= .f(e) + g(e)

y(zN+ , e )  1 N+1

z2(1-z2)Po(Z2) ... -z2(1-z2)PN-1(Z2) al1 ()

*,(1-z 2I,)Po(zv) ... z((1-z8)PN-1(z,,) aN.()

Formulation of the problem in this manner reduces the size of

the matrix which must be inverted from (N+2)x(N+2) to NxN, al-

though increasing the coding effort. Application of equation

(81) to the above problem reduces the distributed system to a

set of N ordinary differential equations represented by:

S= W ( 0 - L 0(0)); (0o) = " (82)

Manipulative details and full matrix definitions for this

problem are provided in Appendices G and H. It should be noted

that the function, w(z), which appears outside the summation

sign in the general trial function (Appendix G) has been taken

as w(z) = z(l-z) as previously seen in equation (46). This

specific form is used exclusively in this investigation for



56

all of the interparticle approximations. However, one might

possibly specify the form of w(z) relative to the types of

polynomials used. That is, for a given function w(z), one

might specify the polynomials such.that the columns of the

NxN coefficient matrix in equation (81) become orthogonal.

Thus, one would be taking advantage of the orthogonality

properties of the specific polynomials rather than using an

arbitrary polynomial set. For example, if one used w(z) =

z(l-z) in the trial function (as is shown in equation (81)),

the columns of the NxN matrix could be made orthogonal by

defining the polynomial set by:

2(1-z)2i(z) Pj(z) dz =Ci61

The inner products of the matrix columns would represent the

discrete form of this integral.

The merits of utilizing the orthogonality properties

of the specified function set has not been established. As

will pointed out in Part 9, Discussion, the undertaking of such

a study requires computing capabilities (precision) to deter-

mine roots of polynomials which may be "uncommon" and not

tabulated to a large number of significant figures. For these

reasons, the choice of polynomials in this investigation was

dictated by the availability of the high precision roots.

An eigenanalysis* of the matrix W in equation (82)

*A computer program listing is given as part of Appendix H.

This program performed all the manipulations and computations

documented in Appendices G and H as well as the eigenanalysis.
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was made for Peclet numbers of 1, 10, 100, 1000, and 10000.

The number of collocation points, N, was varied in the se-

quence 3, 4, 7, 15, and 21, The shifted Legendre polynomials

and roots were used in the analysis. The value of zo was

held at 2.0 for all cases.

For all cases, the eigenanalysis yielded eigenvalues

with negative real parts indicating a stable set of ordinary

differential equations. This result contradicts the results

obtained earlier (Woodrow, 1973) for Pe=l. The difference

between the analysis lies in the sequence of manipulations

and computations made in arriving at the matrix, in this paper

W, to be analysed. Although the approaches are equivalent

theoretically, the computations produced different. The approach

detailed in Appendix G is therefore favored.

While stability is indicated by the negative real

parts of the eigenvalaps an oscillatory behavior was indi-

cated by the presence of imaginary parts for a majority of

the eigenvalues in each case. The magnitudes of the imagi-

nary parts increased with increasing Pe. Therefore, it was

reasonable to expect that simulations using the orthogonal

collocation technique would exhibit some degree of oscilla-

tion depending on how the modes of the matrix, 1, were

coupled.

Various simulations have been performed for this

problem. Table 6 sumarizes the different cases considered in

this investigation. The method by which the set of differential
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TABLE 6

Summary of Orthogonal Collocation Simulations

for the Transient, Diffusion-Convection Problem

0(e) = Unit rectangular pulse of five times duration)

Pe N Figure Reference Execution time*
(sec.)

32.0 3 Figure 8 23.55

32.0 7 Figure 9 102.05

32.0 15 Figure 10 1164.32

10000.0 15 Figure 12 301.62

10000.0 21 Figure 13 . 891.10

0(9) =KActual input data, Figure 14}

Pe N Figure Reference Execution time**
(sec.)

10000.0 3 Figure 16 .23.90

10000.0 7 Figure 17 57.10

10000.0 15 Figure 18 419.25

* Double precision computations using FORTRAN G on IBM 360/50;
integratons terminated at ten time units.

**Double precision computations using FORTRAN G on IBM 360/50;
integrations terminated at twenty time units.

Note: For all cases z = 2.0; responses for all collocation
points outputed at each time increment.
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equations was solved is based on an extrapolation treatment

(B ulirsch and Stoer, 1966). This algorithm appears in a sub-

routine (DREBS) which is part of the IMSL scientific subrou-

tine library (IMSL, 1973, p. DREBS) currently available on

Rensselaer's IBM 360/50 computing facility. The computations

were made entirely in double precision using the FORTRAN G

compiler. Table 6 shows how execution time for the simula-

tions was affected by N, the number of collocation points.

The method used to integrate the equations is not

too well kno-m. In their paper, Bulirsch and Stoer showed

the superiority of the extrapolation treatment over a Runge-

Kutta and Adams-Moulton-Bashforth methods. A comparision was

made between the subroutine DREBS, the IBM SSP (IBM, 1968)

subroutines for a fourth order Runge-Kutta and Hamming Predic-

tor-Corrector method, and a simple Euler Method. The com-

parision was-based on the N=3 simulation for this system. 
For

the same error criteria, it was found that the Euler method

was significantly slower than the extrapolation treatment aad

while the Runge-Kutta and Predictor-Corrector methods used a

larger step size than the Euler step size, the step was still

much smaller than the extrapolation treatment and hence was

computationally slower. This result agrees with Bulirsch and

Stoer for the problems that they considered.

Although the eigenanalysis indicated that the system

of ordinary differential equations was stable, a closer exam-

ination (made near the conclusion of this investigation) of the
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computed eigenvalues indicated that the system became increas-

ingly "stiff" with increasing approximation order. Table 7

shows this behavior and the behavior as affected by Peclet

number. The parenthesised ratios are the absolute value of

the largest eigenvalue real part to the absblute value of the

smallest eigenvalue real part. The result of the indicated

,division is shown beneath each ratio. Using these ratios as

measures of stiffness; one can see that the equation set is

Pstiffer" for low values of Peclet number and hence a smaller

integration step is required when the large eigenvalue response

mode contributes to the solution. This would have the*effect

of increasing computation time with low Peclet number for a

given order of discretization. This deduction is consistent

with the increased computation times for the low Peclet number

versus the high Peclet number simulations for the unit rec-

tangular forcing pulse (see Table 6). Although the Bulirsch

and Stoer extrapolation technique may not be particiularly well

suited for the "stiff" system, it \as used as the method of

integration. In retrospect, another algorithm might have been

better - perhaps a variable order Adams method (Hull et.al.,

1972). Within the IMSL library, the subroutine DVGOER (IMSL,

1973, p.DVGOER) using Gear's implementation (Gear, 1971a,1971b)

would be a likely candidate for use. This situation could

form an additional area of analysis - whether orthogonal col-

location approximations produce, in general, stiff ordinary

differential equation sets and what integration algorithm can



TABLE 7

Largest to Smallest Elgenvalue Ratios for

the Orthogonal Collocation Discretization

of the Simple, Diffusion-Convection Problem

N, Pe

1 10 100 1000 10000

3 (22.26) (348) ( 5) (1.46) (1 -)
1.28 1.190 0.90 0

17.4 = 2.92 = 1.63 = 1.63 = 1.63

7 44.1 (10.49) (3-30)
-1.28 2.52 0.95 0.57 0.53

* 274. = 17.6 = 11.1 = 4.53 = 6.2

15 5974. (639.8 ) 99.43 2).) 18.0
1.27 2.70 2.72 0.14

- 4700.0 = 236.0 = 36.5 = 40.3 = 127.1

21 21892.0 (2272.0) 301.2 81.5-) 40.4)
211.28 2.70 -. 67 1.o0 0.30

= 17100.0 = 840.0 = 82.0 = 81.5 = 136.0

Ratios are ( max lreall / minl Areall

where ?'s are the eigenvalues of W in

= =.W ., - 1 (e))

(Z.

T"
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be used most effectively for simulation purposes.

Returning to Table 6. the first set of cases involves

the use of a unit rectangular pulse of five time units dura-

tion as the forcing function, 0(e). Within this first set

of cases, the Peclet number was set at 32. The exact response,

computed by convolution of the impulse response with the input

is given in Figure 7. Figures 8, 9, and 10 show the orthogonal

collocation approximations to the response for 3. 7, and 15

collocation points respectively. Note that all responses are

for z=0.5 and zo=2.0. Hence, the responses correspond to the

behavior at the bed outlet. This is a convenient scaling of

the problem because for the odd order approximations used and

the shifted Legendre polynomials, the point z=0.5 is always

a root and hence collocation point. The response for 3 col-

location points shows several objectionable oscillations com-

pared to the exact solution, although qualitative character-

istics are well approximated. The response for seven collo-

cation poi ts exhibits several oscillations of much smaller

amplitude and duration and the exact response is increasingly

well approximated. The response for fifteen collocation

points is very close to the exact response and, within the

accuracy of the plot, is virtually identical. However, the

digital response did show small oscillations when the response

"should have been" zero.

Subsequent to the studies for Pe=32, it was decided

to use a Peclet number more representative of the magnitude
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encountered in the chromatographic system, namely Pe= 10000.

Figure 11 shows the exact response. With the large value of

Pe, the character of the parabolic partial differential equa-

tion becomes increasingly hyperbolic. The exact response is

effectively the translated input pulse with the corners slightly

rounded and dispersed. The orthogonal collocation approxi-

mations to the exact response are given in Figures 1.2 and 13

for N=15 and N=21 respectively.- Both approximations exhibit

numerous moderate amplitude oscillations. This shows the dif-

f iculty that the orthogonal collocation technique has in approx-

imating functions with sharp, almost discontious behavior.

For this situation, a high degree of discretization would be

desirable. An attempt to generate collocation matrices for a

thirty-first order simulation was made. This attempt was not

successful because the matrix W showed instability in the form

of positive eigenvalues. This result, which would completely

reversi the trend of convergence to the solution with increas-

ing N, was attributed to accumulated round-off errors in eval-

uation of .the coefficient matrix because the required preci-

sion to carry the higher order polynomial coefficients becomes

greater than the precision capability of the computer being

used (IBM 360/50).

Upon discovery of this weakness of the orthogonal

collocation technique and the computational constraint of the

IBM 360/50, effort was directed to use of a "less" sharp

forcing function in conjunction with the high Pe value. The
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chosen forcing function was actual chromatograph input data

(normalized with respect to the dimensionless time, 8) shown

in Figure 14. This input data corresponds to an injected

Pentane sample at 150 C. studied previously (Keba and Woodrow,

1972). This forcing function is used for the second set of

cases listed in Table 6. The exact response, again computed

by convolution of the impulse response with input is shown

in Figure 15. Figures 16, 17, and 18 show the orthogonal col-

location approximations to the exact response for 3, 7, and

15 collocation points respectively. For purposes of numerical

integration, the input function was interpolated using cubic

spline functions. Another IMSL subroutine, ICS1CE (IMSL, 1973,

p. ICS1CE), was used to compute the .interpolation coefficients.

Again, all responses shown are.for z=0.5 and zo=2.0. The

result for N=3, Figure 16, exhibits an oscillatory behavior

and gives a good qualitative representation of the true response.

The result for N=7, Figure 17, exhibits a better approximation

with reduced oscillations. The result for N=15, Figure 18,

gives virtually the same result as the exact. Again, oscil-

lations are still present in the digital results but are of

very small magnitude.

The preceding results offer several conclusions as

to the usefulness of orthogonal collocation for the system

under consideration:

1. Orthogonal collocation greatly reduces the degree

of spatial discretization required for numerical
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stability as compared to a finite difference dis-

cretization.

2. High values of Peclet number combined with very

sharp forcing functions; i.e., rectangular pulses,

require a degree of approximation which may become

limited by computing capabilities.

3. The use of smoother pulses in the cases of high

Peclet number allows a very good result for N=15

and a very reasonable result for N=7.



PART 7

APPLICATION OF ORTHOGONAL COLLOCATION TO A
RATE OF ADSORPTION LIMITED INTER-INTRAPARTICLE

MODEL

Subsequent to the studies of the previous section,

attention was directed to applying orthogonal collocation to

a model which was more complex and which might be used, under

certain conditions, as a viable model for a chromatographic

system with porous packing material. If one considers the

inter-intraparticle model represented by equations (2), (3),

(4), and (5) and considers the case where Nt0 o-. and PeA--0,

the following model may be deduced (see Appendix A);

(1/PeE)6 y/6z' - by/6z - NRU(y-y*) = 6y/ e (83)

(1/RI)6xa/e = NRU(y-y*) (84)

y* = m xa (85)

For analytic solutions, the applicable initial and boundary

conditions are:

y(z,O) =' O; z>O (86)

xa(z,O) = 0; z>O (87)

y(0,o) = d(e); eao (88)

lim y(z,e) = finite; 0>0 (89)

Equations (83) through (89): form what is termed the Rate of

Adsorption Limited Inter-Intraparticle Model. For purposes

78
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of numerical solution, the terminal boundary condition,

equation (89), is.replaced by the finite terminal boundary

condition previously applied. And the forcing function,

6(e), is replaced by a finite width pulse, 0(0).

This model is mathematically equivalent to an inter-

particle with finite rates of mass transfer which was pre-

viously considered (Keba and Woodrow, 1972). By analogy, the

Laplace transform of; the time domain response is (column

outlet):

y(l,s) = y(O,s) exp [(Pe,/2) - arg]

where

arg = P (R-NUmRI/(+NRUmRI )+PeE/4

+ NRU(1-mRI) ,
+ N

From equation (88), y(O,s) = 1. Substitution and inversion

gives the init impulse response for the model.

y(,9) = o (Y + Y2)

where:

o = (g) (PeEI) .exp(PeE/2)-exp(-NRumRIe)

n = (1/ I ) exp (PeE/40)-(PeEo/4)-NRu +NRumRI]

2 11 RUmRI(e-x)x] 1
Y2 = 2 NRUmRj [2 N Umo(0-z)I

exp[-((PeE/4x)+(PeEx/4)+NRU(1-mRI)x) .dx
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For inputs other than the unit 
impulse, numerical convolution

is used to generate solutions. 
Using the techniques documented

previously (Keba and Woodrow, 
1972), a solution may be compu-

ted directly. The exact solution which is subsequently 
pre-

sented was computed using this 
previously documented technique.

This model has two parameters, 
mRI and NRU, which

are not estimable a priori 
and require determination via 

an

appropriate curve fitting 
technique. In the example that

follows, the parameter mRi 
is taken to be the same (numerically)

as the mRo value determined 
previously (Keba and Woodrow, 

1972).

The parameter, NRU, is estimated by matching (graphically) 
the

variances of the actual output 
data with that which is pre-

dioted by the model added to the 
input data variance (see equa-

tion (20)). The data set that is to be 
considered in this

section is that for Acetone 
at 100 C. taken on the Chromasorb

102 column (Keba and Woodrow, 1972). 
The parameter mRI is

taken to be 0.029 and the parameter 
NRUit oslast it ated to be

87.0. Figure 19 shows how NRU was 
determined and for compa-

ision shows an equivalent relationship 
for the model devel-

oped in Part 2. The plot shows that the 
neglecting of the

diffusion (intraparticle) and 
mass transfer effects requires

a smaller NRU to give the 
same predicted output variance.

Hence, the diffusive and mass 
transfer effects (primarily

diffusive due to the high NtOG 
value) are being "lumped" into

the rate of adsorption parameter, 
NRU. Other parameter values

are the same as indicated in Table 
1. Figure 20 shows a plot
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of the dimensionless time normalized input data. Figure 21

shows the exact response for this problem and the given param-

eters computed using the analytic impulse response and numer-

ical convolution.

Application of orthogonal.collocation to this model

results in a set of 2N ordinary differential equations, where

N is again the number of collocation points. Appendix I gives

the details of the orthogonal collocation approximation treat-

ment of equations (83), (84), and (85). The model is reduced

to the following set of 2N ordinary differential equations:

y = W1. + W2 y4 - 1.0() ; 9(0) 0 (90)

z*= W3 ( - z*); Z*(o) = 0 (91i)

where 0(e) is again the forcing function and Z and j* are the

(Nxl) vectors of the compositions and equilibrium compositions

at the N collocation points, respectively. The matrices in

equations (90) and (91) are fully defined in Appendix I.

Several simulations using this orthogonal collocation

approximation have been made. Table 8 gives a summary of

these computations. The entries in this table are not in

strict chronology. The following paragraphs fully present

these results and document the chronological details. In all

oases, the system of ordinary differential equations was in-

tegrated by using the previously referenced IMSL library sub-

routine, DREBS. However, all simulations were made in single
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TABLE 8

Summary of Orthogonal Collocation Simulation
Times for the Rate of Adsorption Limited,

Inter-Intraparticle Model

COMPUTER7 3 N= 7 N = 15 N = 21

(Figure 22) (Figure 23) (Figure 24) (Figure 25)

IBM 360/501 - 25.05 min. 110.22 min. 390. min.
(estimated)

IBM 360/502 6.49 min. 23.53 min. ------- 350. min.
(estimated)

CDC 76003 -----.....-- 0.316 min. ------- 2.87 min.

All execution times are for single precision integration up to
90 units of dimensionless time.

1FORTRAN H, output:at every integration step.

2FORTRAN H, output at approximately every 0.25 units of
dimensionless time.

30utput at approximately every 0.25 units of dimensionless
time.
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precision while some matrix addition and subtractions were

made in double precision. A listing of the program used for

these computations is given in Appendix I. As noted in

Table 8, some responses were computed on the IBM 360/50

computing facility at RPI whereas others were made at the

CDC 7600 computing facility at Combustion Engineering, Inc.,

Windsor, Connecticut. As in Part 6, the spatial dimension

was rescaled. The plotted results are for the collocation

point z=0.5, with zo=2.0. Again this corresponds to the bed

outlet.

Figure 22 shows the simulated response for N=3.

This approximation is extremely qualitative as compared to

the exact solution. The only correct prediction is that of

the time of appearance for the peak of the response.

The result of the simulated response for N=7 is

given in Figure 23. The plot shows several. large amplitude

oscillations and a peak height which is approximately 20 per.

cent lower than the exact response. However, as compared to

the N=3 case, the improvement is substantial. As far as

computer time, the use of approximately 25 minutes on the

IBM 360/50 was not too acceptable. This run formed a basis

for a later comparative run on the CDC 7600. As table 8

shows, the gain in execution speed with the CDC machine for

N=7 is approximately 75 times.

The result of the simulated response for N=15 is

given in Figure 24. The plot shows an increasingly good
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agreement with the exact response. The oscillations are still

present but of much reduced amplitude. The peak height is

slightly smaller than the exact height. However, the behavior

of the response for 0<25 and e>60 should be improved. This

result indicated that a run with an additional number of: col-

location points was desirable. However, the large amount of

computer time expended for the N=15 simulation, 110 minutes,

was a debit on the side of further simulation. A small time

run (10 minutes of computer time) for the N=21 case on the

IBM 360/50 gave an extrapolated complete run time (integrating

up to 90 units of dimensionless time) of approximately 390

minutes. This small time run indicated that the higher order

approximation was decreasing the amplitude and frequency of

initial oscillations as compared to the N=15 run. However,

the time required to perform the complete calculations was

too long (cost and scheduling). to obtain results on the

IBM 360/50.

At this point in time, effort was directed to ob-

taining access to a computer more suited to the type of com-

putations being made. Arrangements were made to remotely

access the CDC 7600 computer at Combustion Engineering in

Windsor, Connecticut. This machines capabilities yielded a

radical improvement in expended computer time. The case of

N=21 was run using this machine. As Table 8 shows the run

time to be approximately 122 times faster than the estimated

run time for the reduced output case. Figure 25 shows the
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results for N=21. The results, when superimposed on the exact

response, give virtual exact agreement. The only identifiable

discrepancies are the oscillations for e<20 and 0>70. The

largest magnitude of the noted oscillations is quite small,

0.08 x 10-2

Thus, it appears that for accurate approximation

solutions for this problem, a fairly high degree of orthogonal

collocation discretization in the spatial domain is required.

Also, it is apparent that available computer hardware must be

a very sizable consideration for extensive simulations.

As a postscript to this part, it should be noted that

going from the IBM 360/50 to the CDC 7600 required some alter-

ations in the IMSL subroutine DREBS, as the IMSL - CDC package

was not available at the Combustion Engineering CDC 7600.

One of the changes involved a machine-precision dependent con-

stant. Fortunately, a CDC listing of DREBS was obtained in-

directly from IMSL (Larsen, 1974).



PART 8

APPLICATION OF ORTHOGONAL COLLOCATION TO AN
INTER-INTRAPARTICLE ADSORPTION MODEL WITH

NEGLIGIBLE MASS TRANSFER RESISTANCE

Orthogonal collocation approximations for the solu-

tions of the previous two models have used discretizations in

the interparticle region or axial dimension. When the model

is one where concentration gradients are assumed to exist

within the intraparticle region, an approximation treatment

for the intraparticle domain is necessary. If one considers

the inter-intraparticle model represented by equations (2),

(3), (4), and (5), and considers the case where Nt0G

the following model may be deduced (see Appendix A):

(1/PeE)9y/6z - by/bz - [(3(1-)P/~)(L/A)2/PoeA (1Yi,./6=l =

6 y/ (92)

(L/R) 2 /Pej[y 1 /il.+ (2/.)byif ]  - NRU(y I-y) = yi/a

... (93)

(1/R)X a/be = NRu(yi- (94)

y = mr (95)

This model is one of the most complicated forms

that one might encounter in isothermal, packed bed analysis.

The initial and boundary conditions are the same as equations

(6) through (12) with equation (13) replacing (10) as the

appropriate inter-intraparticle boundary condition. This

93
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modification in the original model gives the inter-intrapar-

ticle adsorption model negligible mass transfer resistance be-

tween the interparticle and intraparticle regions. For pur-

poses of numerical treatment, the terminal boundary condition,

equation (12), is replaced by the finite boundary condition

previously applied. The forcing function, S(e), is replaced

by a finite width pulse, 0(e).

This model introduces the necessity to perform a

collocation approximation in the radial (intraparticle) di-

mension, 4, in addition to the axial (interparticle) dimension,

z. For purposes of such a treatment, the trial function used

by others (Finlayson, 1972, p.99) in the analysis of unsteady

diffusion in a sphere, is equation (70):

NA

yi( e) = h(G) + (1-.e)i Eai() PI_( R )

where NA is the number of intraparticle collocation points.

When used in combination with an axial treatment, the axial

position, z, should be included to give:

NA

yi(z,&A,) = h(z,G) + (i~n)E ai(z,e) Pi- 1 () (96)i=1

The polynomials in /L in equation (96) can be defined by a

condition similar to equation (45) by making the change in

variable Z=z and 2dL=dz. The result is:

fw( PI(j2~)PI(A )}idjr = (Ci/2) Sj (97)

0-f
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In general, w(z) in equation (45) is of the form:

w(z) = Zs(1-z)

Substituting this and the above change of variable into

equation (97) gives:

A1B ) PPi()Pj(/)d/L = (Ci/2)Sij (98)

The form given by Villadsen (1970). The formulas used from

that text for recursive computation of the respective poly-

nomial coefficients defined by equation (45) may be modified,

as Villadsen shows, to give formulas for recursive computation

of the coefficients for the polynomials in the squared dimen-

sion defined by equation (98). In the analysis that follows,

the polynomials used are those defined by equation (98) with

a=0, b=1,v=,' and =1. This is the case for spherical sym-

metry. The coefficients are computed.using the recursive

formulas due to Villadsen and the roots are taken from the

values reported by Finlayson (1972, p. 102).

Solution of this three, coupled partial differential

equation problem requires orthogonal collocation approximations

in two different spatial domains. The problem is one with

three independent variables, z, A, and 9; and three dependent

variables y, yi, and y* (or Xa). A solution to this type of

problem appears not to have been attempted using the orthogonal

collocation technique. To aid in envisioning the two-domain

discretization required in the analysis of this problem,
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Figure 26 gives a representation of the orthogonal collocation

"grid". Here the collocation points are denoted by NE for the

interparticle domain and NA for the intraparticle domain,

respectively.

Appendix J presents the orthogonal collocation ap-

proximation development for the intraparticle region. A com-

puter program listing which was used to generate the first and

second derivative intraparticle approximation matrices also

appears in this appendix. Appendix K develops expressions for

simulating transient diffusion and adsorption/desorption be-

havior within a single particle. Appendix L combines these

results with the appropriate interparticle results to give the

full representation of the orthogonal collocation approxima-

tion for the model considered in this part. The result is a

system of (NE + 2(NE)(NA)) coupled, ordinary differential

equations:

(NE x 1) I =^W (y - &(9)) - COUPLE (99)
vector -

and for j=1,..., NE

(NA x 1) i,J = INTRA Zi,j - INTRAC (1 y(zj,e))
vector

+ INTRAA 1, (100)

(NA x 1) j = INTIAE (yi, j - ,j) (101)
vector

The strategy for determining what degree of approx-

imation is adequate for accurate model solution is different

than what was previously used; i.e., comparision of approximate
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solutions to the exact solution. Here, successive approxima-

tions must be compared to see if a convergent trend is noted.

The appropriate order if approximation is then determined

when increasing order gives no noticeable change in simulated

response. This was the strategy which was to be used for an-

aiysis of this problem. However, as will be shown, completion

of this strategy was not feasible.

The data set that is to be used in this section is

the same that was used in the previous part for the rate of

adsorption limited model. The differences are in the two

choices of parameters mR I and NRU. The parameter mR I was

chosen to be based on an mRO of 0.029, a bed void fraction,

4, of 0.40 and a particle void fraction, p, of 0.40. Using

equation (1), this would give the value of mR1 to be 0.0174.

The value of NRU was estimated from Figure 19,to be 145.0

from the model curve with a finite NtOG. However, because

of the high NtOG in this data set, its contribution to the

model variance is quite negligible and hence this value of

NRU is appropriate for the case of NtOG7~'o.

Table 9 presents a summary of what combination of

interparticle and intraparticle approximations were slated for

simulation. With access to the CDC 7600, it was decided to.

run small-time (10 minutes of computer time) simulations on

the IBM 360/50 to gain an estimate of the computer time neces-

sary to complete the planned analysis. A listing of the pro-

gram used for this purpose is given in Appendix L. AgAin
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TABLE 9

Inter-Intraparticle Model.Orthogonal Collocation
Approximations - Computer Time Estimates

NE NA N Estimated Execution
Time (min.)*

3 1 9 630.0

3 3 21 22500.0

7 1 21 1442.0

7 3 49 90000.0

15 1 45 3750.0

N = NE(i + 2NA)

* IBM 360/50, FORTRAN H, integration (single precision)

up to 90 units of dimensionless time with output at

approximately every 0.01 time units.
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the IMSL subroutine DREBS was used to perform the integration

of the system of ordinary differential equations for this

problem. The time estimates in Table 9 are overwhelming even

if one decreases them by the gain in speed (on, the order of

one hundred times) with the CDC 7600. Within the imposed finan-

oial constraints and justifications needed to motivate such

an expenditure, the complete analysis of this problem was

not feasible. One could have possibly improved the situation

by choosing "nice" parameter values but this would have

negated the objective to study a technique with real-life

problem conditions.

The question arises then as to what information can

be gained from this part of this investigation. First of all,

it must be said that based on the computer hardware available

and the technique used, the straightforward analysis of this

complex problem using orthogonal collocation is not very ex-

pedient. The pulsed, distributed system with multi-coupled

transport rhenomena presents a complicated problem for analysis.

However, one might conceivably apply successfully the two do-

main collocation approximation treatment for steady state or

step response simulations for packed bed systems, either iso-

thermal or non-isothermal. In addition, this analysis was

based on two specific polynomial sets each orthogonal over

one spatial domain interval. It could be argued that perhaps

polynomials orthogonal to two domains simultaneously; i.e.,

a surface, would be more appropriate for this type of problem.
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Although the results of this section are in .the

negative side, they should not be construed as a condemnation

of orthogonal collocation as a technique but rather as an

example where a method may not be as well suited as others

and where some innovations in the theory could possibly re-

sult in a treatment that may be practical within the computa-

.tional capabilities that now exist.



PART 9

DISCUSSION

The initial part of this investigation was motivated

by previous-efforts in the area of mathematical modeling of a

gas chromatograph. This investigation set out to derive and

study a model which incorporated more of the dynamically rel-

evant transport phenomena thought to be occurring in the ex-

perimental systems being studied by Mars project co-workers.

Hence, a model has been proposed and derived which includes

both interparticle and intraparticle transport phenomena.

As with previous models, it was desirable to deter-

mine whether or not this model could be used to adequately

predict chromatograph system responses. Application of Laplace

transform techniques gave a transform which was not readily

invertable. However, because the model was linear and trans-

formable, the derived transform could be used to determine

the predictive capabilities of the model in the time domain.

Here, the techniques of moment analysis were applied and it

was shown that the model possessed a high degree of flexibility

in predictive capabilities using the statistical quantities

known as moments which can characterize the responses of

pulsed, distributed systems. This method of analysis is very

useful because the effect of varying system parameters present

in the model-can be studied very efficiently and a great deal

of insight into the model characteristics can be gained, as

102



103

was the case in this investigation. In fact, the results of

the moment analysis gave sufficient motivation for the contin-

ued analysis of the complex inter-intraparticle adsorption

model.

Because the derived model appeared to have no

direct analytical solution, it was necessary to develop nu-

merical capabilities in order to efficiently simulate the

time domain response of the modeland.hence verify the model's

predictive effectiveness. However, prior to the investigation

of numerical techniques, some study was given to the problem

of replacing the infinite column boundary condition used in

analytical work with a finite column terminal boundary condi-

tion used in analysis of chemical reactor problems and which

was necessary for numerical treatment of the model partial

differential equations. It was desirable to apply the finite

column boundary condition so that infinite column behavior

would result at the bed outlet. Two simple problems were

studied, one with the infinite column condition and the other

with the finite column condition. Again, the technique of

moment analysis proved a very effective tool in determing how

infinite column response characteristics (moments) at the bed

outlet might be matched by the problem with a finite terminal

boundary condition. For the simple model considered, criteria

were developed as a function of the Peclet number which gave

guidelines for applying the finite terminal boundary. These

gave reasonable assurance that column responses for both the
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finite and infinite boundary conditions were essentially the

same. These criteria were used, somewhat con'servatively, in

the numerical solutions which were later made.! Although the

method of developing the boundary condition criteria was ap-

plied to the simple model with one system parameter, the Peclet

number, the method of analysis could be extended to more com-

plex linear models and sets of criteria could be developed as

functions of the system parameters present in each individual

model.

Based on the preceding aspects of this investiga-

tion, effort was directed to the study of orthogonal collo-

cation as a numerical approximation technique which would

hopefully prove useful as an efficient tool for routine anal-

ysis of the complex chromatograph system models. These

models might be linear (as was the case in this work) or non-

linear partial differential equations. The study of non-linear

composition effects is an area of interest for continued

chromatogr.ph modeling effort. In this investigation, orthog-

onal collocation was applied to approximate solutions to

three linear, distributed model of increasing complexity.

The first model was a simple, one equation model requiring a

collocation treatment in one spatial domain, the interparticle.

The second model involved solution of two coupled partial

differential equations requiring a collocation treatment in

the interparticle domain. The third model involved solution

of three coupled partial differential equations requiring
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collocation treatments in two spatial domains, the interpar.

ticle and intraparticle.

The procedure for attacking these mathematical

problems is summarized in Figure 27. This schematic provides

a unified framework for discussing the general aspects and

specific results of this investigation into the use of orthog-

onal collocation.

The block denoted by STEP 1 serves as a starting

point in problem analysis. This block, as indicated by the

dashed lines is preliminary in nature and central to any mod-

eling problem. For this investigation, the work of Part 2

could be lumped into this category.

The block denoted by STEP 2 corresponds to that

part of an analysis where one has to make a choice of the nu-

merical method (if required) to use in the analysis of the

formulated problem(s).- The choices could be a finite differ-

ence treatment, a finite element treatment, a weighted resid-

ual treatment (e.g. orthogonal collocation), or a variational

treatment. This choice may be motivated by previous exper-

ience, the work of other investigators in solving similar pro-

blems, and/or the desire to establish the applicability of a

certain method to a certain type of problem. In this inves-

tigation, the choice of orthogonal collocation as a method of

analysis was motivated by all of the above - the inefficiency

of the finite difference technique to the simple, diffusion-

convection problem (previous experience), the use of orthogonal
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collocation by other investigators to solve certain problems

in chemical reaction engineering, and the desire to ascertain

the merits of orthogonal collocation as a computational tool

for analysis of pulsed, distributed systems; e.E., the gas

chromatograph.

Following the choice of orthogonal collocation as

the method for the analysis of the formulated problems, one

proceeds to STEP 3, the choice of the trial function. Inputs

to this choice may be innovation or imagination, suggestions

from similar problems with analytic solutions, or trial func-

tions from previously worked examples. The trial functions

used in this investigation were taken from the work of other

investigators. However, the trial function for interparticle

analysis was generalized to an extent (Appendix G). The

generality of this trial function was not explored - thorough

exploration of the effects of trial function choice in com-

bination with orthogonal function choice (STEP 4) for even

one problem would be a basis for an entire investigation at

least.

This brings one to STEP 4, the choice of the or-

thogonal functions to be used in the trial function expansion.

This block in the problem analysis can have the highest degree

of variation. The choice can be dictated by the trial func-

tion itself, symmetry considerations (the polynomials in

for the intraparticle region), the type of solution (perhaps

suggested by physical reasoning ), previous experience
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(orthogonal polynomials weighted in a certain way gave faster

convergence with a previous problem), and the work of other

investigators. This investigator chose very specific poly-

nomials for use in the trial functions employed in the pro-

blems analysed. The choice was suggested by'the-works of

other investigators and was further dictated by the availabil-

ity of the required polynomial roots. Use of some less

"common" polynomials require determination of roots which may

not be tabulated to high accuracy. Thus, one would have to

pursue root-finding computations which, based on available

computer precision capabilities, may be infeasible. This

type of study; .e., different polynomial types, was a desired

component of this investigation but efforts to compute new

roots to sixteen figure accuracy were limited by the available

IBM 360/50. Thus, this desired area of study was abandoned.

In conjunction with this, one should note the added input to

the STEP 4 block citing the very practical consideration of

computing capabilities - in this instance, word-length capa-

bility. Recently, the notion of there being better polynom-

ials for certain problems received attention by Ramkrishna

(1973). He showed that the choice of "problem specific poly-

nomials" to be relevant and desirable for effective use of

weighted residual techniques.

The block denoted by STEP 5 is labeled DISCRETIZATION.

This is descriptive of the manipulations and computations

which must be made to reduce the expressions for the partial
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derivatives at the collocation points to expressions in terms

of the solutions at the respective collocation points. The

manipulations of Appendix G and Appendix J are typical of

what must be done.' A key aspect of these computations is the

inversion of a matrix. Part 5 showed how the conditioning of

the matrix to be inverted may be enhanced by a change-in for-

mulation. One was able to retain a tolerable condition with-

in the constraint of the available computer precision. How-

ever, as was pointed out in Part 6, attempts to generate a

thirty-first order interparticle discretization were unsuc-

cessful because the word-length of the available IBM 360/50

computer limited the accuracy of the polynomial coefficients.

Next is STEP 6, SIMULATION. This block comprises

the use of the previously derived and computed discrete re-

presentations to reduce the distributed model to a set of

ordinary differential equations. This set of ordinary dif-

ferential equations can be integrated to yield the approx-

imate response. As was done with the simple model (Part 6).

the equations can be put in a suitable form.wherein an eigen-

analysis of the system can be made to determine the character

of the approximation solution. This also served to expose

the stiffness of the equation set. The simulated response(s)

can be compared with exact solutions (if available), solutions

from other techniques (if available), and with simulations

using different orders of approximation. As was shown with

the rate of adsorption limited inter-intraparticle model, the
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available computing capabilities (execution speed) can be a

factor in limiting the extent of any planned simulation pro-

gram. In fact, this constraint (even with the CDC 7600)

prohibited complete analysis of the inter-intraparticle ad-

sorption model with negligible mass transfer resistance be-

tween the interparticle and intraparticle regions.

STEP 7, ASSESSMENT, serves as an area where one

can assess the results and the reasons for the results. Among

the questions that must be answered are:

1. Is the problem practically solvable?

2. Does the orthogonal collocation treatment, as

applied, have sufficient power to be used as a

routine tool in analysis of the posed problem(s)?

Regarding the first two problems solved in this' investigation,

the answers to the above questions would be affirmative. How-

ever, with regard to the third problem, the answers are not

affirmative. The key words in the second question are "as

applied" because the trial function and/or polynomial type

may be unsuited to the problem at hand and may thus require

some new innovations in this area. This is the reason for

the "feedback" loops from STEP 7 to STEP 3 and to STEP 4.
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CONCLUSIONS

This investigation has been conducted in conjunction

with the group effort to define fundamental system design

criteria necessary for an optimal design of a combination gas

chromatograph - mass spectrometer. Specifically, this inves-

tigation has dealt with the formulation of a more complex

mathematical model for a gas chromatograph and subsequent ef-

forts to ascertain the merits of the numerical technique known

as orthogonal collocation as a technique worthy of routine use

in the time domain simulation of complex gas chromatograph

models.

Previous work dictated the formulation of a model

which took into account more of the dynamically relevant

transport mechanisms thought to be occurring in the chromato-

graph system. A model has been formulated which includes

intraparticle diffusion and rates of adsorption that were

heretofore neglected. The model has been analysed using the

moment analysis technique. This analysis of the proposed

Inter-Intraparticle Adsorption Model indicates that the gross

characteristics of actual data are more adequately predicted

than with previous models.

The mathematical complexity of the proposed Inter-

Intraparticle Adsorption Model has prompted consideration of

numerical techniques appropriate for the solution of the

111
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partial differential equations being postulated. The use

of numerical techniques for the second-order models being

considered requires the use of a finite terminal boundary

condition. Criteria have been developed for a simple model

wherein a finite terminal boundary condition can be applied

which yields system responses which .are for all intents and

purposes equivalent to the responses obtained using an in-

finite column boundary condition.

The general theory and computational aspects of

the method knoi as orthogonal collocation have been reviewed

and discussed. An alternate method of problem formulation

gives a matrix (which must be inverted in either formulation)

which is significantly better conditioned for inversion pur-

poses. It is concluded that this different approach is better

than previously documented approaches when computer word-

length capabilities are a consideration as is the case for

most practical situations.

The method of orthogonal collocation has been suc-

cessfully applied to two problems of the chromatograph system

type. The first problem was the simple transient diffusion-

convection equation and the second was the rate of adsorption

limited inter-intraparticle model. These models required

orthogonal collocation treatments for one spatial domain, the

interparticle. For the system parameters considered it appears

that 15 collocation points are adequate for the simple model

and 21 collocation points are adequate for the rate of ad-
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sorption limited model. However, the latter model required

the computing power of a CDC 7600.

The application of orthogonal collocation to an

inter-intraparticle adsorption model with negligible mass

transfer resistance between the interparticle and intrapar-

ticle regions is not, based on the two domain (interparticle

and intraparticle) orthogonal collocation treatment, prac-

tically feasible even with the computing power of a CDC 7600.

It is concluded that although the theory of orthogonal col-

location may be viable, there could possibly be significant

improvement in practical requirements if modifications in

trial function and/or orthogonal function choices can suc-

cessfully be effected. This conclusion applies, to a lesser

degree, to the two other models considered in this investi-

gation.

Thus, it appears that in its present state, orthog-

onal collocation can be a useful tool for analysis of one

spatial domain, pulsed, distributed systems. Use of orthogc -al

collocation for two-spatial domain, pulsed, distributed

systems requires the reversion back to the steps of trial

function selection and orthogonal function selection in order

to effect a practical approximation treatment.

Throughout this investigation certain areas of work

have been mentioned as areas suitable for future research.

The proceeding remarks summarize these areas.

One area is the use of specific polynomials to take
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advantage of their orthogonality relative to the trial func-

tion expansion and whether specific polynomials within the

trial function would produce better results from the stand-

point of increased accuracy with a lower order of approximation.

In addition, the form of the trial function is an area where

further investigation may be made to ascertain what trial

function form (in conjunction with orthogonal function choice)

is best for a given problem.

The solution of the sets of ordinary differential

equations produced by application of the orthogonal collo-

cation technique is another area suitable for further re-

search. It was shown that the equations for the orthogonal

collocation approximation of the simple, diffusion-convection

model possess characteristics of a stiff set. This situ-

ation raises the question as to what method of integration

should be used. This could form an additional area of re-

search - whether orthogonal collocation approximations pro-

duce, in general, stiff ordinary differential equation sets

and what integration algorithm can be used most effectively

for simulation purposes.
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PART 12

NOMENCLATURE

AS - unit impulse, Dirac delta function.

Ay.AX,AG - areas under output response curve, input

response curve, and impulse curve, respeo-

tively.

a - lower bound on interval of orthogonality

used in orthogonal polynomial definition,

equation (45).

ai(9) - time-varying coefficients in trial function

expansion.

ap - ratio 6f interfacial area to packed volume,

b;- upper bound of interval of orthogonality

used in orthogonal polynomial definition,

equation (45).

Ci - scale factor used in orthogonal polynomial

definition, equation (45).

COUPLE - vector used in equation (99).

di(e) - time-varying coefficients in trial function

expansion.

d vector of time-varying coefficients defined

in equation (63).

f(e) - time-varying function in the trial function

expansion.

- vector of time-varying coefficients defined

in equation (50).
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g(O) time-varying function in the, trial function

expansion.

h(e) time-varying function in equation (70). Later

extended to h(z,e) in equation (96).

Ii - modified Bessel function of the first kind.

INTIA matrices used in equation (100).

INTUAA

INTRAC

INTRAE - matrix used in equation (101).

L - length of chromatograph column, dimensional.

m - iequlibrium constant.

N - number of collocation points except as defined

differently in Part 8.

NE - number of interparticle collocation points.

NA - number of intraparticle collocation points.

NRU - the number of reactor units, a dimensionless

measure of the rate of adsorption.

NtoG - number of transfer units, dimensionless.

Pe - Peclet number, dimensionless.

PeA - intraparticle Peclet number, a dimensionless

measure of diffusion rates within the particle.

PeE - interparticle Peclet number, a dimensionless

measure of diffusion rates within the carrier

gas.

Pi( ) - group of polynomials, initially arbitrary

but later constrained to be orthogonal on
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interval [a,b] by equation (45) or (98).

R - matrix defined by equation (62).

- matrix defined by equation (66).

q2 - matrix defined by equation (67).

/L - intraparticle space variable, dimensionless.

R - particle radius, dimensional.

RA - rate of sample adsorption.

RI - moles of fluid in the particle per mole of

adsorption sites within the particle.

RO - moles of fluid within the total bed per moles

of adsorption sites within the bed.

R - matrix defined by equation (49).

RI - matrix defined by equation (56).

R2 - matrix defined by equation (57).

Res - residual formed by trial function substi-

tution in a differential equation.

s - Laplace transform variable.

w(z) - weighting function used in orthogonal poly-

nomial defining equation (45).

W - weighting function in weighted residual

integral, equation (43).

W - matrix used initially in equation (82); then

in equation (90).

W - matrices used in equation (90)

W2

3 - matrix used in equation (91).



119

xa - adsorbed phase concentration, dimensionless.

y - interparticle gas phase composition, dimen-

sionless.

Yi - intraparticle gas phase composition, dimen-

sionless.

S- equilibrium intraparticle gas phase compo-

sition, dimensionless.

- vector of solution values at the interparticle

collocation points.

* - vector of equilibrium concentration values

at the interparticle collocation points.

Si - vector of intraparticle concentration values

at the intraparticle collocation points.

7 - vector of intraparticle equilibrium con-

centration values at the intraparticle

collocation points.

z - axial position in column, dimensionless.

zj - -collocation point or end point, dimension.

less.

Zo axial position where finite terminal boundary

condition, equation (33), is applied.

GREEK LETTERS

o- p.part of the power of in equation (98);

- particle porosity or void fraction; power of
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quantity (1-,2 ) in equation (98).

AG - time increment in finite difference method.

Az - space increment in finite difference method.

6( ) - Dirac delta function.

6ij - Kronecker delta.

E - vid fraction of the bed.

- 3.14159...

e - dimensionless time variable.

Mn - the nth moment about the origin defined by

equation (14).

An - the nth moment about /41, defined by

equation (17).

o - function which satisfied boundary condition

in trial function expansion.

0(e) - forcing function used in analysis of chro-

matograph problems.

SUBSCRIPTS

I - refers to Case I boundary condition analysis.

II - refers to Case II boundary condition analysis.

i - refers to space level in Finite Difference

technique; refers to column in Orthogonal

Collocation matrices.

a - refers to time level in Finite Difference

techniques; refers to row and/or collocation

points in Orthogonal Collocation matrices.
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MISCELLANEOUS

[ ]J - refers to the matrix element of the jth row

and the ith column.
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